Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Antioxidants (Basel) ; 13(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38539789

RESUMO

Cholangiopathies lack effective medicines and can progress into end-stage liver diseases. Mining natural product transcriptome databases for bioactive ingredients, which can reverse disease-associated transcriptomic phenotypes, holds promise as an effective approach for drug discovery. To identify disease-associated transcriptomic changes, we performed RNA-sequencing on bile duct ligation (BDL)-induced cholestatic liver fibrosis mice, as well as PBC and PSC patients, and found that PANoptosis and activation of type-I interferon (IFN) signaling were observed in BDL mice and patients with PBC and PSC. We then established a transcriptotype-driven screening system based on HERB and ITCM databases. Among 283 natural ingredients screened, apigenin (Api), which is widely distributed in varieties of food and medicinal plants, was screened out by our screen system since it reversed the expression pattern of key genes associated with PANoptosis and type-I IFN responses. In BDL, Abcb4-/-, and DDC-fed mice, Api effectively ameliorated liver injuries, inflammation, and fibrosis. It also protected cholangiocytes from bile acid-stimulated PANoptosis, thus alleviating damage-associated molecular pattern-mediated activation of TBK1-NF-κB in macrophages. Additionally, Api directly inhibited type-I IFN-induced downstream inflammatory responses. Our study demonstrated the pathogenic roles of PANoptosis and type-I IFN signaling in cholestatic liver fibrosis and verified the feasibility of transcriptotype-based drug screening. Furthermore, this study revealed a novel anti-inflammatory mechanism of Api and identified it as a promising candidate for the treatment of cholestatic liver fibrosis.

2.
Acta Pharm Sin B ; 14(3): 1009-1029, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486982

RESUMO

Liver fibrosis, characterized by scar tissue formation, can ultimately result in liver failure. It's a major cause of morbidity and mortality globally, often associated with chronic liver diseases like hepatitis or alcoholic and non-alcoholic fatty liver diseases. However, current treatment options are limited, highlighting the urgent need for the development of new therapies. As a reversible regulatory mechanism, epigenetic modification is implicated in many biological processes, including liver fibrosis. Exploring the epigenetic mechanisms involved in liver fibrosis could provide valuable insights into developing new treatments for chronic liver diseases, although the current evidence is still controversial. This review provides a comprehensive summary of the regulatory mechanisms and critical targets of epigenetic modifications, including DNA methylation, histone modification, and RNA modification, in liver fibrotic diseases. The potential cooperation of different epigenetic modifications in promoting fibrogenesis was also highlighted. Finally, available agonists or inhibitors regulating these epigenetic mechanisms and their potential application in preventing liver fibrosis were discussed. In summary, elucidating specific druggable epigenetic targets and developing more selective and specific candidate medicines may represent a promising approach with bright prospects for the treatment of chronic liver diseases.

3.
J Ethnopharmacol ; 328: 118057, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38518965

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic fatty liver disease (NAFLD) represents a burgeoning challenge for public health with potential progression to malignant liver diseases. PANoptosis, an avant-garde conceptualization of cell deaths, is closely associated with mitochondrial damage and linked to multiple liver disorders. Si-Wu-Tang (SWT), a traditional Chinese herbal prescription renowned for regulating blood-related disorders and ameliorating gynecological and hepatic diseases, has been demonstrated to alleviate liver fibrosis by regulating bile acid metabolism and immune responses. AIM OF THE STUDY: However, the mechanisms by which mtDNA is released from PANoptotic hepatocytes, triggering macrophage activation and hepatitis and whether this process can be reversed by SWT remain unclear. MATERIALS AND METHODS: Here, sophisticated RNA-sequencing complemented by molecular approaches were applied to explore the underlying mechanism of SWT against NAFLD in methionine/choline-deficient diet (MCD)-induced mice and relative in vitro models. RESULTS: We revealed that SWT profoundly repaired mitochondrial dysfunction, blocked mitochondrial permeability transition and mtDNA released to the cytoplasm, subsequently reversing hepatocyte PANoptosis and macrophage polarization both in MCD-stimulated mice and in vitro. Mechanically, loaded lipids dramatically promoted the opening of mPTP and oligomerization of VDAC2 to orchestrate mtDNA release, which was combined with ZBP1 to promote hepatocyte PANoptosis and also taken by macrophages to trigger M1 polarization via the FSTL1 and PKM2 combination. SWT effectively blocked NOXA signaling and reversed all these detrimental outcomes. CONCLUSION: Our findings show that SWT protects against hepatitis-mediated hepatocyte PANoptosis and macrophage M1 polarization by influencing intrahepatic synthesis, release and intercellular transfer of mtDNA, suggesting a potential therapeutic strategy for ameliorating NAFLD.


Assuntos
Medicamentos de Ervas Chinesas , Hepatite , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , DNA Mitocondrial/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Metionina/metabolismo , Hepatite/metabolismo , Camundongos Endogâmicos C57BL
4.
Chin Herb Med ; 16(1): 82-93, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375042

RESUMO

Objective: Hepatic fibrosis has been widely considered as a conjoint consequence of almost all chronic liver diseases. Chuanxiong Rhizoma (Chuanxiong in Chinese, CX) is a traditional Chinese herbal product to prevent cerebrovascular, gynecologic and hepatic diseases. Our previous study found that CX extracts significantly reduced collagen contraction force of hepatic stellate cells (HSCs). Here, this study aimed to compare the protection of different CX extracts on bile duct ligation (BDL)-induced liver fibrosis and investigate plausible underlying mechanisms. Methods: The active compounds of CX extracts were identified by high performance liquid chromatography (HPLC). Network pharmacology was used to determine potential targets of CX against hepatic fibrosis. Bile duct hyperplasia and liver fibrosis were evaluated by serologic testing and histopathological evaluation. The expression of targets of interest was determined by quantitative real-time PCR (qPCR) and Western blot. Results: Different CX extracts were identified by tetramethylpyrazine, ferulic acid and senkyunolide A. Based on the network pharmacological analysis, 42 overlap targets were obtained via merging the candidates targets of CX and liver fibrosis. Different aqueous, alkaloid and phthalide extracts of CX (CXAE, CXAL and CXPHL) significantly inhibited diffuse severe bile duct hyperplasia and thus suppressed hepatic fibrosis by decreasing CCCTC binding factor (CTCF)-c-MYC-long non-coding RNA H19 (H19) pathway in the BDL-induced mouse model. Meanwhile, CX extracts, especially CXAL and CXPHL also suppressed CTCF-c-MYC-H19 pathway and inhibited ductular reaction in cholangiocytes stimulated with taurocholate acid (TCA), lithocholic acid (LCA) and transforming growth factor beta (TGF-ß), as illustrated by decreased bile duct proliferation markers. Conclusion: Our data supported that different CX extracts, especially CXAL and CXPHL significantly alleviated hepatic fibrosis and bile duct hyperplasia via inhibiting CTCF-c-MYC-H19 pathway, providing novel insights into the anti-fibrotic mechanism of CX.

5.
Clin Mol Hepatol ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38414375

RESUMO

Liver sinusoidal endothelial cells (LSECs) are liver-specific endothelial cells with the highest permeability than other mammalian endothelial cells, characterized by the presence of fenestrae on their surface, the absence of diaphragms and lack of basement membrane. Located at the interface between blood and other liver cell types, LSECs mediate the exchange of substances between the blood and the Disse space, playing a crucial role in maintaining substance circulation and homeostasis of multicellular communication. As the initial responders to chronic liver injury, the abnormal activation of LSECs not only changes their own physicochemical properties but also interrupts their communication with HSCs and hepatocytes, which collectively aggravates the process of liver fibrosis. In this review, we have comprehensively updated the various pathways by which LSECs were involved in the initiation and progression of liver fibrosis, including but not limited to cellular phenotypic change, the induction of capillarization, decreased permeability and regulation of intercellular communications. Additionally, the intervention effects and latest regulatory mechanisms of anti-fibrotic drugs involved in each aspect have been summarized and discussed systematically. As we studied deeper into unraveling the intricate role of LSECs in the pathophysiology of liver fibrosis, we unveil a promising horizon that pave the way for enhanced patient outcomes.

6.
Int J Biol Sci ; 20(3): 968-986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250161

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by fibrotic matrix deposition and irreversible aberrant tissue remodeling. Their mechanisms of action are associated with the activation of macrophages and a disturbed immune environment. We aim to determine how these activated macrophages influenced the pathogenesis of pulmonary fibrosis. We found the fibrotic areas of IPF patients contained more serum and glucocorticoid-induced kinase 1 (SGK1)-positive and M2-type macrophages. Similarly, bleomycin (BLM)+LPS significantly triggered high expression of SGK1 in the IPF mice, accompanied by destroyed lung structure and function, increased fibrosis markers and disturbed immune microenvironment. Mechanistically, SGK1 markedly promoted the reprogramming of M2-type macrophages in fibrotic lungs by triggering glycogen synthase kinase 3beta (GSK3ß)-tat-interacting protein 60 (TIP60)- histone-3 lysine-27 acetylation (H3K27ac) signalings, which further released chemokine (C-C motif) ligand 9 (CCL9) to attract Th17 cells and delivered TGF-ß to fibroblasts for synergistically destroying immune microenvironment, which was largely reversed by macrophage depletion in mice. We took macrophages as the entry point to deeply analyze IPF pathogenesis and further provided insights for the development of novel drugs represented by SGK1.


Assuntos
Glucocorticoides , Fibrose Pulmonar Idiopática , Proteínas Serina-Treonina Quinases , Animais , Humanos , Camundongos , Acetilação , Homeostase , Macrófagos
7.
Chin J Nat Med ; 22(1): 31-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38278557

RESUMO

Liver fibrosis is a dynamic wound-healing response characterized by the agglutination of the extracellular matrix (ECM). Si-Wu-Tang (SWT), a traditional Chinese medicine (TCM) formula, is known for treating gynecological diseases and liver fibrosis. Our previous studies demonstrated that long non-coding RNA H19 (H19) was markedly upregulated in fibrotic livers while its deficiency markedly reversed fibrogenesis. However, the mechanisms by which SWT influences H19 remain unclear. Thus, we established a bile duct ligation (BDL)-induced liver fibrosis model to evaluate the hepatoprotective effects of SWT on various cells in the liver. Our results showed that SWT markedly improved ECM deposition and bile duct reactions in the liver. Notably, SWT relieved liver fibrosis by regulating the transcription of genes involved in the cytoskeleton remodeling, primarily in hepatic stellate cells (HSCs), and influencing cytoskeleton-related angiogenesis and hepatocellular injury. This modulation collectively led to reduced ECM deposition. Through extensive bioinformatics analyses, we determined that H19 acted as a miRNA sponge and mainly inhibited miR-200, miR-211, and let7b, thereby regulating the above cellular regulatory pathways. Meanwhile, SWT reversed H19-related miRNAs and signaling pathways, diminishing ECM deposition and liver fibrosis. However, these protective effects of SWT were diminished with the overexpression of H19 in vivo. In conclusion, our study elucidates the underlying mechanisms of SWT from the perspective of H19-related signal networks and proposes a potential SWT-based therapeutic strategy for the treatment of liver fibrosis.


Assuntos
Medicamentos de Ervas Chinesas , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Fígado/metabolismo , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Matriz Extracelular/metabolismo
8.
Acta Pharmacol Sin ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233527

RESUMO

Numerous liver diseases, such as nonalcoholic fatty liver disease, hepatitis, hepatocellular carcinoma, and hepatic ischemia-reperfusion injury, have been increasingly prevalent, posing significant threats to global health. In recent decades, there has been increasing evidence linking the dysregulation of cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING)-related immune signaling to liver disorders. Both hyperactivation and deletion of STING can disrupt the immune microenvironment dysfunction, exacerbating liver disorders. Consequently, there has been a surge in research investigating medical agents or mediators targeting cGAS-STING signaling. Interestingly, therapeutic manipulation of the cGAS-STING pathway has yielded inconsistent and even contradictory effects on different liver diseases due to the distinct physiological characteristics of intrahepatic cells that express and respond to STING. In this review, we comprehensively summarize recent advancements in understanding the dual roles of the STING pathway, highlighting that the benefits of targeting STING signaling depend on the specific types of target cells and stages of liver injury. Additionally, we offer a novel perspective on the suitability of STING agonists and antagonists for clinical assessment. In conclusion, STING signaling remains a highly promising therapeutic target, and the development of STING pathway modulators holds great potential for the treatment of liver diseases.

9.
Phytother Res ; 38(2): 620-635, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37953063

RESUMO

Idiopathic pulmonary fibrosis (IPF), as the most common idiopathic interstitial pneumonia, is caused by a complex interaction of pathological mechanisms. Interestingly, IPF frequently occurs in the middle-aged and elderly populations but rarely affects young people. Salvianolic acid B (SAB) exerts antioxidant, antiinflammatory, and antifibrotic bioactivities and is considered a promising drug for pulmonary disease treatment. However, the pharmacological effects and mechanisms of SAB on cellular senescence of lung cells and IPF development remain unclear. We used bleomycin (BLM)-induced pulmonary fibrosis mice and different lung cells to investigate the antisenescence impact of SAB and explain its underlying mechanism by network pharmacology and the Human Protein Atlas database. Here, we found that SAB significantly prevented pulmonary fibrosis and cellular senescence in mice, and reversed the senescence trend and typical senescence-associated secretory phenotype (SASP) factors released from lung macrophages and alveolar type II (AT2) epithelial cells, which further reduced lung fibroblasts activation. Additionally, SAB alleviated the epithelial-mesenchymal transition process of AT2 cells induced by transforming growth factor beta. By predicting potential targets of SAB that were then confirmed by chromatin immunoprecipitation-qPCR technology, we determined that SAB directly hampered the binding of transcription factor stimulating protein 1 to the promoters of SASPs (P21 and P16), thus halting lung cell senescence. We demonstrated that SAB reduced BLM-induced AT2 and macrophage senescence, and the subsequent release of SASP factors that activated lung fibroblasts, thereby dual-relieving IPF. This study provides a new scientific foundation and perspective for pulmonary fibrosis therapy.


Assuntos
Benzofuranos , Depsídeos , Fibrose Pulmonar Idiopática , Pulmão , Pessoa de Meia-Idade , Idoso , Humanos , Camundongos , Animais , Adolescente , Pulmão/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Senescência Celular/fisiologia , Macrófagos Alveolares , Bleomicina/efeitos adversos
10.
Int J Biol Sci ; 19(15): 4967-4988, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781526

RESUMO

Hepatic ischemia-reperfusion injury (HIRI), a common two-phase intersocietal reaction in liver surgery, typically leading to sustained liver dysfunction. During this process, liver sinusoidal endothelial cells (LSECs) are vulnerable to damage and exert senescence-associated secretory phenotype (SASP). However, how these SASP-LSECs secreted damage-associated molecular patterns (DAMPs) to impact the whole HIRI microenvironment and whether it can be reversed by therapeutics remains unknown. Here, we found that either HIRI surgery or hypoxia and reoxygenation (HR) stimulation forced LSECs into SASP and expressed HMGB1-dominated DAMPs, which were dramatically improved by acteoside (ACT). Additionally, hypoxic hepatocytes released excessive HMGB1 to LSECs and synergistically aggravated their SASP state. Mechanistically, HMGB1 bound with TLR3/TLR4 on LSECs, promoted the nuclear translocation of IRF1 and subsequent transcription of cxcl1 and Hmgb1, leading to the chemotaxis of neutrophils and accelerating immune damage in a vicious circle. Notably, ACT or HMGB1 siRNA effectively disrupted HMGB1-TLR3/4 interaction, leading to IRF1 inhibition and repairing LSEC functions, which was largely reversed by HMGB1 stimulation and IRF1-overexpressed liposomes with LSECs-targeted hyaluronic acid-derivative conjugated in mice. Collectively, ACT reversed the senescent fate of LSECs and restored sinusoidal networks by targeting HMGB1-TLR3/4-IRF1 signaling, thus providing protection against HIRI and offering the potential for new therapeutics development.


Assuntos
Proteína HMGB1 , Traumatismo por Reperfusão , Camundongos , Animais , Proteína HMGB1/metabolismo , Células Endoteliais/metabolismo , Receptor 3 Toll-Like/metabolismo , Fígado/metabolismo , Hepatócitos/metabolismo , Traumatismo por Reperfusão/metabolismo , Hipóxia/metabolismo
11.
Eur J Pharm Sci ; 190: 106581, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37696460

RESUMO

Cancer immunotherapy has been recognized as a revolutionary breakthrough and has yielded impressive results. However, a major challenge facing immunotherapy is its limited efficacy, which may be largely due to the inadequate infiltration of immune cells into the tumor microenvironment (TME). Autophagy inhibition has been identified to enhance the recruitment of immune cells into the tumor by upregulating the expression and secretion of chemokines. Here, we verified a novel autophagy inhibitor tetramethylpyrazine (TMP) from natural products using a mCherry-GFP-LC3 probe-based autophagy flux reporter system. We then devised a liposomal system capable of co-delivering DOX and TMP using the thin-film dispersion method and modified the liposome with PD-L1 binding peptide JY4 (DOX-TMP-JY4LIPO). We found that DOX-TMP-JY4LIPO exhibited potent antitumor efficacy in vitro. In addition, DOX-TMP-JY4LIPO could effectively inhibit the autophagic flux to enhance the recruitment of immune cells into the tumor by upregulating CCL5 and CXCL10. The liposome exhibited favorable biocompatibility and safety while facilitating the accumulation of therapeutic drugs in tumors. DOX-TMP-JY4LIPO significantly inhibited tumor growth in LLC xenograft mice, accompanied by increased granzymes- and perforin-mediated cytotoxic immune responses. Our findings demonstrate that the TMP-loaded and PD-L1-targeting liposomal nanoparticles can significantly boost antitumor immunity by inhibiting autophagy, suggesting a novel natural product-based nanomedicine for immunotherapy.


Assuntos
Lipossomos , Nanopartículas , Humanos , Animais , Camundongos , Lipossomos/farmacologia , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Autofagia , Microambiente Tumoral
12.
Chin J Nat Med ; 21(9): 694-709, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37777319

RESUMO

Chuanxiong Rhizoma (CX, the dried rhizome of Ligusticum wallichii Franch.), a well-known traditional Chinese medicine, is clinically used for treating cardiovascular, cerebrovascular and hepatobiliary diseases. Cholestatic liver damage is one of the chronic liver diseases with limited effective therapeutic strategies. Currently, little is known about the mechanism links between CX-induced anti-cholestatic action and intercellular communication between cholangiocytes and hepatic stellate cells (HSCs). The study aimed to evaluate the hepatoprotective activity of different CX extracts including the aqueous, alkaloid, phenolic acid and phthalide extracts of CX (CXAE, CXAL, CXPA and CXPHL) and investigate the intercellular communication-related mechanisms by which the most effective extracts work on cholestatic liver injury. The active compounds of different CX extracts were identified by UPLC-MS/MS. A cholestatic liver injury mouse model induced by bile duct ligation (BDL), and transforming growth factor-ß (TGF-ß)-treated human intrahepatic biliary epithelial cholangiocytes (HIBECs) and HSC cell line (LX-2 cells) were used for in vivo and in vitro studies. Histological and other biological techniques were also applied. The results indicated that CXAE, CXAL and CXPHL significantly reduced ductular reaction (DR) and improved liver fibrosis in the BDL mice. Meanwhile, both CXAE and CXPHL suppressed DR in injured HIBECs and reduced collagen contraction force and the expression of fibrosis biomarkers in LX-2 cells treated with TGF-ß. CXPHL suppressed the transcription and transfer of plasminogen activator inhibitor-1 (PAI-1) and fibronectin (FN) from the 'DR-like' cholangiocytes to activated HSCs. Mechanistically, the inhibition of PAI-1 and FN by CXPHL was attributed to the untight combination of the acetyltransferase KAT2A and SMAD3, followdd by the suppression of histone 3 lysine 9 acetylation (H3K9ac)-mediated transcription in cholangiocytes. In conclusion, CXPHL exerts stronger anti-cholestatic activity in vivo and in vitro than other CX extracts, and its protective effect on the intracellular communication between cholangiocytes and HSCs is achieved by reducing KAT2A/H3K9ac-mediated transcription and release of PAI-1 and FN.

13.
Chin Herb Med ; 15(3): 421-429, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37538867

RESUMO

Objective: Cassiae Semen (CS, Juemingzi in Chinese) has been used for thousands of years in ancient Chinese history for relieving constipation, improving liver function as well as preventing myopia. Here we aimed to elucidate the anti-steatosis effect and underlying mechanism of CS against non-alcoholic fatty liver disease (NAFLD). Methods: High-performance liquid chromatography (HPLC) was used to identify the major components of CS water extract. Mice were fed with a high-fat and sugar-water (HFSW) diet to induce hepatic steatosis and then treated with CS. The anti-NAFLD effect was determined by measuring serum biomarkers and histopathology staining. Additionally, the effects of CS on cell viability and lipid metabolism in oleic acid and palmitic acid (OAPA)-treated HepG2 cells were measured. The expression of essential genes and proteins involved in lipid metabolism and autophagy signalings were measured to uncover the underlying mechanism. Results: Five compounds, including aurantio-obtusin, rubrofusarin gentiobioside, cassiaside C, emodin and rhein were simultaneously identified in CS extract. CS not only improved the diet-induced hepatic steatosis in vivo, as indicated by decreased number and size of lipid droplets, hepatic and serum triglycerides (TG) levels, but also markedly attenuated the OAPA-induced lipid accumulation in hepatocytes. These lipid-lowering effects induced by CS were largely dependent on the inhibition of fatty acid synthase (FASN) and the activation of autophagy-related signaling, including AMP-activated protein kinase (AMPK), light chain 3-II (LC3-II)/ LC3-1 and autophagy-related gene5 (ATG5). Conclusion: Our study suggested that CS effectively protected liver steatosis via decreasing FASN-related fatty acid synthesis and activating AMPK-mediated autophagy, which might become a promising therapeutic strategy for relieving NAFLD.

14.
Acta Pharmacol Sin ; 44(12): 2479-2491, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580495

RESUMO

Liver fibrosis is a wound-healing process characterized by excess formation of extracellular matrix (ECM) from activated hepatic stellate cells (HSCs). Previous studies show that both EZH2, an epigenetic regulator that catalyzes lysine 27 trimethylation on histone 3 (H3K27me3), and long non-coding RNA H19 are highly correlated with fibrogenesis. In the current study, we investigated the underlying mechanisms. Various models of liver fibrosis including Mdr2-/-, bile duct ligation (BDL) and CCl4 mice were adapted. We found that EZH2 was markedly upregulated and correlated with H19 and fibrotic markers expression in these models. Administration of EZH2 inhibitor 3-DZNeP caused significant protective effects in these models. Furthermore, treatment with 3-DZNeP or GSK126 significantly inhibited primary HSC activation and proliferation in TGF-ß-treated HSCs and H19-overexpreesing LX2 cells in vivo. Using RNA-pull down assay combined with RNA immunoprecipitation, we demonstrated that H19 could directly bind to EZH2. Integrated analysis of RNA-sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) further revealed that H19 regulated the reprogramming of EZH2-mediated H3K27me3 profiles, which epigenetically promoted several pathways favoring HSCs activation and proliferation, including epithelial-mesenchymal transition and Wnt/ß-catenin signaling. In conclusion, highly expressed H19 in chronic liver diseases promotes fibrogenesis by reprogramming EZH2-mediated epigenetic regulation of HSCs activation. Targeting the H19-EZH2 interaction may serve as a novel therapeutic approach for liver fibrosis.


Assuntos
Histonas , RNA Longo não Codificante , Animais , Camundongos , Epigênese Genética , Células Estreladas do Fígado/metabolismo , Histonas/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Lisina/química , Lisina/metabolismo , Metilação
15.
Chin Herb Med ; 15(2): 157-168, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37220535

RESUMO

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with high pathogenicity and infectiousness has become a sudden and lethal pandemic worldwide. Currently, there is no accepted specific drug for COVID-19 treatment. Therefore, it is extremely urgent to clarify the pathogenic mechanism and develop effective therapies for patients with COVID-19. According to several reliable reports from China, traditional Chinese medicine (TCM), especially for three Chinese patent medicines and three Chinese medicine formulas, has been demonstrated to effectively alleviate the symptoms of COVID-19 either used alone or in combination with Western medicines. In this review, we systematically summarized and analyzed the pathogenesis of COVID-19, the detailed clinical practice, active ingredients investigation, network pharmacology prediction and underlying mechanism verification of three Chinese patent medicines and three Chinese medicine formulas in the COVID-19 combat. Additionally, we summarized some promising and high-frequency drugs of these prescriptions and discussed their regulatory mechanism, which provides guidance for the development of new drugs against COVID-19. Collectively, by addressing critical challenges, for example, unclear targets and complicated active ingredients of these medicines and formulas, we believe that TCM will represent promising and efficient strategies for curing COVID-19 and related pandemics.

16.
Acta Pharmacol Sin ; 44(9): 1826-1840, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37095199

RESUMO

Obesity contributes to the progression of various chronic diseases, and shortens life expectancy. With abundant mitochondria, brown adipose tissue (BAT) dissipates energy through heat to limit weight gain and metabolic dysfunction in obesity. Our previous studies have shown that aurantio-obtusin (AO), a bioactive ingredient in Chinese traditional medicine Cassiae semen significantly improves hepatic lipid metabolism in a steatotic mouse model. In the current study we investigated the effects of AO on lipid metabolism in the BAT of diet-induced obesity mice and in oleic acid and palmitic acid (OAPA)-stimulated primary mature BAT adipocytes. Obese mice were established by feeding a HFHS diet for 4 weeks, and then administered AO (10 mg/kg, i.g.) for another 4 weeks. We showed that AO administration significantly increased the weight of BAT and accelerated energy expenditure to protect the weight increase in the obese mice. Using RNA sequencing and molecular biology analysis we found that AO significantly enhanced mitochondrial metabolism and UCP1 expression by activating PPARα both in vivo and in vitro in the primary BAT adipocytes. Interestingly, AO administration did not improve metabolic dysfunction in the liver and white adipose tissue of obese mice after interscapular BAT excision. We demonstrated that low temperature, a trigger of BAT thermogenesis, was not a decisive factor for AO to stimulate the growth and activation of BATs. This study uncovers a regulatory network of AO in activating BAT-dependent lipid consumption and brings up a new avenue for the pharmaceutical intervention in obesity and related comorbidities.


Assuntos
Tecido Adiposo Marrom , PPAR alfa , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , PPAR alfa/metabolismo , Camundongos Obesos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Mitocôndrias/metabolismo , Metabolismo Energético , Tecido Adiposo Branco/metabolismo , Termogênese , Camundongos Endogâmicos C57BL
17.
J Ethnopharmacol ; 310: 116418, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36990301

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Yinzhihuang granule (YZHG) has liver protective effect and can be used for clinical treatment of non-alcoholic fatty liver disease (NAFLD), but its material basis and mechanism need to be further clarified. AIM OF THE STUDY: This study aims to reveal the material basis and mechanism of YZHG treating NAFLD. MATERIALS AND METHODS: Serum pharmacochemistry were employed to identify the components from YZHG. The potential targets of YZHG against NAFLD were predicted by system biology and then preliminarily verified by molecular docking. Furthermore, the functional mechanism of YZHG in NAFLD mice was elucidated by 16S rRNA sequencing and untargeted metabolomics. RESULTS: From YZHG, 52 compounds were identified, of which 42 were absorbed into the blood. Network pharmacology and molecular docking showed that YZHG treats NAFLD with multi-components and multi-targets. YZHG can improve the levels of blood lipids, liver enzymes, lipopolysaccharide (LPS), and inflammatory factors in NAFLD mice. YZHG can also significantly improve the diversity and richness of intestinal flora and regulate glycerophospholipid and sphingolipid metabolism. Moreover, Western Blot experiment showed that YZHG can regulate liver lipid metabolism and enhance intestinal barrier function. CONCLUSIONS: YZHG may treat NAFLD by improving the disruption of intestinal flora and enhancing the intestinal barrier. This will reduce the invasion of LPS into the liver subsequently regulate liver lipid metabolism and reduce liver inflammation.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Fígado
18.
Adv Healthc Mater ; 12(11): e2202757, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36652763

RESUMO

Immunotherapy has been regarded as a breakthrough in cancer treatment and achieved great success. However, the poor response rate is still a formidable challenge of current immunotherapies, especially in solid tumors without sufficient infiltration of immune cells, also known as "cold tumor." SAR405 is a highly specific VPS34 inhibitor and has been suggested as a potential approach converting "cold tumor" into "hot tumor" by inhibiting autophagy. In this study, a tri-functional doxorubicin (DOX) plus SAR405 liposome system is established and further modified with a novel anti-PD-L1 peptide JY4 for targeted delivery (DOX-SAR-JY4LIPO ). The data here demonstrate that in a lung cancer xenograft mouse model, by facilitating the tumoral enrichment of both SAR405 and DOX, DOX-SAR-JY4LIPO effectively increases the infiltration of cytotoxic lymphocytes in the tumor by synergizing DOX-induced immunogenic cell death (ICD) and SAR405-mediated upregulation of chemokines including CCL5 and CXCL10. As results, DOX-SAR-JY4LIPO significantly inhibits tumor growth, metastasis, and resurrection by re-educating immunosuppressive tumor microenvironment. In conclusion, this study not only proves the concept of inhibiting autophagy for better immune infiltration in the tumor but also presents a novel tri-functional liposomal system that overcomes the deficiencies of current therapies and holds great promise in cancer immunotherapy.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Animais , Camundongos , Lipossomos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Doxorrubicina/uso terapêutico , Imunoterapia/métodos , Autofagia , Linhagem Celular Tumoral , Microambiente Tumoral , Antígeno B7-H1/uso terapêutico
19.
Chin J Nat Med ; 21(1): 3-18, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36641230

RESUMO

Type I interferon (IFN) is considered as a bridge between innate and adaptive immunity. Proper activation or inhibition of type I IFN signaling is essential for host defense against pathogen invasion, tumor cell proliferation, and overactive immune responses. Due to intricate and diverse chemical structures, natural products and their derivatives have become an invaluable source inspiring innovative drug discovery. In addition, some natural products have been applied in clinical practice for infection, cancer, and autoimmunity over thousands of years and their promising curative effects and safety have been well-accepted. However, whether these natural products are primarily targeting type I IFN signaling and specific molecular targets involved are not fully elucidated. In the current review, we thoroughly summarize recent advances in the pharmacology researches of natural products for their type I IFN activity, including both agonism/activation and antagonism/inhibition, and their potential application as therapies. Furthermore, the source and chemical nature of natural products with type I IFN activity are highlighted and their specific molecular targets in the type I IFN pathway and mode of action are classified. In conclusion, natural products possessing type I IFN activity represent promising therapeutic strategies and have a bright prospect in the treatment of infection, cancer, and autoimmune diseases.


Assuntos
Produtos Biológicos , Interferon Tipo I , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Imunidade Inata , Transdução de Sinais , Interferon Tipo I/metabolismo
20.
Animal Model Exp Med ; 6(3): 274-282, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35934841

RESUMO

Idiopathic pulmonary fibrosis (IPF), characterized by aggravated alveolar destruction and fibrotic matrix deposition, tendentiously experiences the stage called acute exacerbation IPF (AE-IPF) and progresses to multiple organ damage, especially liver injury. Recent studies have found a variety of immune microenvironment disorders associated with elevated IPF risk and secondary organ injury, whereas current animal models induced with bleomycin (BLM) could not completely reflect the pathological manifestations of AE-IPF patients in clinic, and the exact underlying mechanisms are not yet fully explored. In the current study, we established an AE-IPF model by tracheal administration of a single dose of BLM and then repeated administrations of lipopolysaccharide in mice. This mouse model successfully recapitulated the clinical features of AE-IPF, including excessive intrapulmonary inflammation and fibrosis and extrapulmonary manifestations, as indicated by significant upregulation of Il6, Tnfa, Il1b, Tgfb, fibronectin, and Col1a1 in both lungs and liver and elevated serum aspartate transaminase and alanine transaminase levels. These effects might be attributed to the regulation of Th17 cells. By sharing this novel murine model, we expect to provide an appropriate experimental platform to investigate the pathogenesis of AE-IPF coupled with liver injury and contribute to the discovery and development of targeted interventions.


Assuntos
Fibrose Pulmonar Idiopática , Camundongos , Animais , Modelos Animais de Doenças , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Inflamação/complicações , Inflamação/patologia , Fibrose , Bleomicina/toxicidade , Fígado/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...